Solar water heating

Solar water heating (SWH) is the conversion of sunlight into heat for water heating using a solar thermal collector. A variety of configurations are available at varying cost to provide solutions in different climates and latitudes. SWHs are widely used for residential and some industrial applications.

Components

Collector

Solar thermal collectors capture and retain heat from the sun and use it to heat a liquid.Two important physical principles govern the technology of solar thermal collectors:

Any hot object ultimately returns to thermal equilibrium with its environment, due to heat loss from conduction, convection and radiation. Efficiency (the proportion of heat energy retained for a predefined time period) is directly related to heat loss from the collector surface. Convection and radiation are the most important sources of heat loss. Thermal insulation is used to slow heat loss from a hot object. This follows the Second law of thermodynamics (the 'equilibrium effect').
Heat is lost more rapidly if the temperature difference between a hot object and its environment is larger. Heat loss is predominantly governed by the thermal gradient between the collector surface and the ambient temperatures. Conduction, convection and radiation all occur more rapidly over large thermal gradients (the delta-t effect).


Flat plate
Flat plate collectors are an extension of the idea to place a collector in an 'oven'-like box with glass directly facing the Sun.Most flat plate collectors have two horizontal pipes at the top and bottom, called headers, and many smaller vertical pipes connecting them, called risers. The risers are welded (or similarly connected) to thin absorber fins. Heat-transfer fluid (water or water/antifreeze mix) is pumped from the hot water storage tank or heat exchanger into the collectors' bottom header, and it travels up the risers, collecting heat from the absorber fins, and then exits the collector out of the top header. Serpentine flat plate collectors differ slightly from this "harp" design, and instead use a single pipe that travels up and down the collector. However, since they cannot be properly drained of water, serpentine flat plate collectors cannot be used in drainback systems.

The type of glass used in flat plate collectors is almost always low-iron, tempered glass. Such glass can withstand significant hail without breaking, which is one of the reasons that flat-plate collectors are considered the most durable collector type.

Unglazed or formed collectors are similar to flat-plate collectors, except they are not thermally insulated nor physically protected by a glass panel. Consequently, these types of collectors are much less efficient when water temperature exceeds ambient air temperatures. For pool heating applications, the water to be heated is often colder than the ambient roof temperature, at which point the lack of thermal insulation allows additional heat to be drawn from the surrounding environment.

Evacuated tube

 

Evacuated tube solar water heater on a roof
Evacuated tube collectors (ETC) are a way to reduce the heat loss, inherent in flat plates. Since heat loss due to convection cannot cross a vacuum, it forms an efficient isolation mechanism to keep heat inside the collector pipes.Since two flat glass sheets are generally not strong enough to withstand a vacuum, the vacuum is created between two concentric tubes. Typically, the water piping in an ETC is therefore surrounded by two concentric tubes of glass separated by a vacuum that admits heat from the sun (to heat the pipe) but that limits heat loss. The inner tube is coated with a thermal absorber. Vacuum life varies from collector to collector, from 5 years to 15 years.

Flat plate collectors are generally more efficient than ETC in full sunshine conditions. However, the energy output of flat plate collectors is reduced slightly more than ETCs in cloudy or extremely cold conditions. Most ETCs are made out of annealed glass, which is susceptible to hail, failing given roughly golf ball -sized particles. ETCs made from "coke glass," which has a green tint, are stronger and less likely to lose their vacuum, but efficiency is slightly reduced due to reduced transparency. ETCs can gather energy from the sun all day long at low angles due to their tubular shape.

Pump

PV pump

One way to power an active system is via a photovoltaic (PV) panel. To ensure proper pump performance and longevity, the (DC) pump and PV panel must be suitably matched. Although a PV-powered pump does not operate at night, the controller must ensure that the pump does not operate when the sun is out but the collector water is not hot enough.

PV pumps offer the following advantages:

Simpler/cheaper installation and maintenance
Excess PV output can be used for household electricity use or put back into the grid.
Can dehumidify living space.
Can operate during a power outage.
Avoids the carbon consumption from using grid-powered pumps.


Bubble pump

The bubble separator of a bubble-pump system

A bubble pump (also known as geyser pump) is suitable for flat panel as well as vacuum tube systems. In a bubble pump system, the closed HTF circuit is under reduced pressure, which causes the liquid to boil at low temperature as the sun heats it. The steam bubbles form a geyser, causing an upward flow. The bubbles are separated from the hot fluid and condensed at the highest point in the circuit, after which the fluid flows downward toward the heat exchanger caused by the difference in fluid levels.[30][31][32] The HTF typically arrives at the heat exchanger at 70 °C and returns to the circulating pump at 50 °C. Pumping typically starts at about 50 °C and increases as the sun rises until equilibrium is reached.

Controller
A differential controller senses temperature differences between water leaving the solar collector and the water in the storage tank near the heat exchanger. The controller starts the pump when the water in the collector is sufficiently about 8–10 °C warmer than the water in the tank, and stops it when the temperature difference reaches 3–5 °C. This ensures that stored water always gains heat when the pump operates and prevents the pump from excessive cycling on and off. (In direct systems the pump can be triggered with a difference around 4 °C because they have no heat exchanger.)

Tank
The simplest collector is a water-filled metal tank in a sunny place. The sun heats the tank. This was how the first systems worked. This setup would be inefficient due to the equilibrium effect: as soon as heating of the tank and water begins, the heat gained is lost to the environment and this continues until the water in the tank reaches ambient temperature. The challenge is to limit the heat loss.

The storage tank can be situated lower than the collectors, allowing increased freedom in system design and allowing pre-existing storage tanks to be used.
The storage tank can be hidden from view.
The storage tank can be placed in conditioned or semi-conditioned space, reducing heat loss.
Drainback tanks can be used.
Insulated tank
ICS or batch collectors reduce heat loss by thermally insulating the tank.This is achieved by encasing the tank in a glass-topped box that allows heat from the sun to reach the water tank. The other walls of the box are thermally insulated, reducing convection and radiation.The box can also have a reflective surface on the inside. This reflects heat lost from the tank back towards the tank. In a simple way one could consider an ICS solar water heater as a water tank that has been enclosed in a type of 'oven' that retains heat from the sun as well as heat of the water in the tank. Using a box does not eliminate heat loss from the tank to the environment, but it largely reduces this loss.

Standard ICS collectors have a characteristic that strongly limits the efficiency of the collector: a small surface-to-volume ratio. Since the amount of heat that a tank can absorb from the sun is largely dependent on the surface of the tank directly exposed to the sun, it follows that the surface size defines the degree to which the water can be heated by the sun. Cylindrical objects such as the tank in an ICS collector have an inherently small surface-to-volume ratio. Collectors attempt to increase this ratio for efficient warming of the water. Variations on this basic design include collectors that combine smaller water containers and evacuated glass tube technology, a type of ICS system known as an Evacuated Tube Batch (ETB) collector.

Contact Form

Please, enter your name
Please, enter your phone number
Please, enter your e-mail address Mail address is not not valid
Please, enter your message

About us

The ArtinA Renewable Energy Engineering and Commerce Company, is a knowledge based company, has been registered in Tehran for the purpose of developing the use of renewable energy, especially solar energy. The company also is ready to carry out joint research projects with universities and research institutes in the field of the construction of the third generation solar cells , Perovskite Solar cells&panels.

Links

SATBA

Address

ArtinA - IRAN Company
Tehran, Mirdamad Blvd.

+982122250753
info@artina.co
Sat-Thu: 9.00 - 17.00